If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+0.3x-70=0
a = 1; b = 0.3; c = -70;
Δ = b2-4ac
Δ = 0.32-4·1·(-70)
Δ = 280.09
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.3)-\sqrt{280.09}}{2*1}=\frac{-0.3-\sqrt{280.09}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.3)+\sqrt{280.09}}{2*1}=\frac{-0.3+\sqrt{280.09}}{2} $
| 4x+19=-4*(-x+8)+50 | | 9(3x^2-4)=0 | | 5x-7=4.5 | | 3(a-6)=6a-(3a-1) | | 7x-(6x+9)=9x-49 | | 17-8x=-7 | | X^2/6x-9=5.5 | | 3/16y=1/y+13 | | 2^2x-5(2^x)+4=0 | | x(12)+2x(24)+4x(3)=528 | | 2x+5-4x=-15 | | x(5^x)=139.75 | | 1/6(7t-6)=11/6t-(t+6/12) | | 1/6(7t-6)=11/6t-((t+6)/12) | | 21+5x=-29 | | 1/6(7t-6)=((11/6)t)-((t+6)/12) | | 6x+28=−8(x+7) | | -x/3+8=5 | | 1/3(x-2)=1/4(x+3) | | 4x²=12 | | 6x28=−8(x+7) | | 7x/8+1/4=6x-7/8 | | 64.9278)(x)+(62.9296)(1-x)=63.546 | | 4(x−0.8)=3.8x−5.8 | | X=13+6x | | 3+(3+2)*4+100=x | | 6(w+7)=-3w-48 | | x=365*24*60*60 | | −(7y+0.6)=3.6−y | | 6(w+7)=-3w+48 | | x-x/2+6=10 | | (1/2)x-(1/3)(x-8)=3x |